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LEITER TO THE EDITOR 

Extrema1 trajectories for stochastic equations obtained directly 
from the Langevin differential operator 

Emilio Cortes 
Departamento de Fisica, Univenidad Aut6nama Metropalitam, PO Box 55-534, 
Iztapalapa, Mexico 
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Abstract. We show that the differential operator for the extrema1 trajectory of a stochastic 
process can be connected directly to the systematic part of the differential operator that 
defines the stochastic equation. By assuming linearity in this  operator and Caurrianity for 
the fluctuation, we are able to write these relations for Markovian as well as non-Markovian 
processes, 

According to the point of view of the path-integral formalism, if the integrals involved 
are Gaussian then the conditional probability density can be expressed as an exponen- 
tial of a functional S [ x ( t ) ]  evaluated along an extremal path. T h e  extremal path is, 
among all the possible paths that connect the fixed end points, that one for which S 
has an extremum value. The calculation of this extremal path usually requires a 
variational procedure that gives us a differential equation for that path. 

Even if the path integrals involved are not Gaussian, as occurs in the case of 
complicated potentials, the extremal path can he useful in many calculations; some 
of them are good approximations [l-41. 

In order to find the extremal trajectory, here we start with a general stochastic 
equation with additive and Gaussian noise 

where we consider D as a linear differential operator, which hereafter is referred to 
as the Langevin operator andf( t )  a stochastic function that can be Markovian or not. 
Then we make a variational calculation starting from this equation and we are able 
to show that the extremal path differential operator can he written as a product of 0, 
its adjoint D* and other factors if the process is non-Markovian. In those cases where 
the operator D has time-dependent coefficients, this factorization can he useful to 
solve a complicated extremal path differential equation. 

We start from equation (1) and asfis Gaussian we define the action as the functional 
PI 

where 
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and 

with a, analytic functions of 1. 

tions by  parts one obtains 
Applying the stationary condition 6s = 0 to equation (Z), and after several integra- 

which is the Lagrange differential equation for the extremal path 
Now, combining equations (3). (4) and (5), we have 

N d'kl 
1 (-1)*-a -kDx=O 

k=O dtk  

and we identify one of the factors in this equation as the adjoint of D [6] 

N d'k) 
D*= 1 ( - l ) k T a N - x .  

k = O  d f  

Then we can write the differential equation ( 5 )  in the compact form 

D*Dx = 0 (9) 

so we observe that in the Markovian case the extremal differential operator is the 
product of the Langevin operator times its adjoint. If the coefficients of D are constants 
then D and D* commute and in this case the general solution for the extremal path 
is a linear combination of the solutions of D ( x )  = 0 and D*(x)  = 0. If not all ti are 
constants then D and D* do not commute and the solutions of D*(x)  = 0 are in general 
not solutions of D*D(x)=O.  We also notice that the operator D*D is self-adjoint. 

Now we go back to equation (1) 

D x = f ( f )  (10) 

( f ( t t ) f ( f d ) = ( D / ~ )  exp(-lfl- h l / T )  (11) 

and we assume a correlation function for f as  

where T is the correlation time; then we can write, together with equation (10). the 
equation 

T - =  - df f + 6  d f  

with 6 being delta correlated. 
Taking the derivative of D ( x )  we obtain 

(1 + 7 2 )  Dx = (( f). 
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Then as .$ is Gaussian and delta correlated we make a similar calculation as we did 
in the first case 

where D is already defined in equation (4). 
Taking the stationary condition 6 s  = 0 we have 

and after doing the calculations we can write the equation for the extremal path as 

where we define the operator DT as 

(16) 

So equation (16) is a general and exact expression for the extremal path differentiai 
equation and it is interesting to have it factorized in this form. 

First we notice that these factors do not commute (if the coefficients of D are not 
constants); we see that any solution of D(x)=O (which is the Langevin systematic 
part) is a particular solution for the extremal and, also, any solution of the equation 
( l + ~ ( d / d t ) ) D ( x ) = O  is a particular solution of the extremal; this last equation is 
exaniy the systematic pan of equation (U).  We continue iaking factors io the ieft OF 
equation (16), and if one is able to solve each time the differential equation of the 
factor in the right side, then we are lowering the order of the external differential 
equation we want to solve. We point out that this equation can havevariable coefficients. 
We also notice in equation (16) that if the correlation time T goes to zero then it 
reduces to equation (9) which is the Markovian limit. 

(16) can be written as 
if ihe uperaior defined in equaiiurr (4) has ioiijiaiii coe&-ientj, then equaiion 

where we are defining a memory operator M = 1 + T(d/dt) and its adjoint M *  = 
1 - T(d/dt). 

We observe that the external operator in this case is self-adjoint, and its factors 
commute; therefore we can write the solution for the external path as a linear combina- 
tion of the solutions of D(x)  = 0, D*(x) = 0 and the functions exp(r/T) and exp(-t/T). 
These exponentials are the solutions that correspond to the memory operators and we 
see that they give to the external path the memory contribution, no matter the precise 
form of the Langevin operator D. 

Looking at equations (9) and (18), we observe in both of them a kind of ‘square’ 
operators D*D and M * M .  This ‘square’ of course depends on the Gaussianity of 
noise and it is interesting to see that these products of operators involve orare equivalent 
to  a variational process. 
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